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Shake-and-bake phasing methods have permitted the ab initio solution of crystal

structures containing more than 1000 independent non-H light atoms (C, N, O).

The success of these procedures is critically dependent upon having diffraction

data measured to at least 1.2 Å resolution. A new target function R2(’h) is

introduced into the shake-and-bake procedure along with a real difference map

strategy whereby this resolution limit can be appreciably lowered toward 1.5 Å.

These improvements, when applied to moderately high resolution data, may

now allow one the possibility to solve structures that are twice as large as could

have been solved previously.

1. Introduction

Whereas the tangent formula (Karle & Hauptman, 1956) had

dominated the early history of direct-phasing methods, dual-

space shake-and-bake (SnB) procedures (Hauptman, 1988;

DeTitta et al., 1994; Weeks et al., 1994) have supplanted the

tangent formula in recent years. Although SnB has permitted

a five- to tenfold increase in the size and complexity of

structures that could be solved by tangent-formula methods, it

has not improved upon the minimal resolution of the data

required for ab initio direct methods to succeed, namely 1.2 Å.

Other similar sophisticated direct-methods programs such as

SHELXD (Usón & Sheldrick, 1999), ACORN (Foadi et al.,

2000), SIR/IL MILIONE (Burla et al., 2005; Caliandro et al.,

2009) and VLD (Burla et al., 2011) have also wrestled with this

issue. This resolution limit can occasionally be relaxed for

structures containing heavier atoms such as sulfur and larger,

especially if the locations of these heavy atoms can be

previously determined by other methods. The efforts to

further develop direct-phasing methods for native light-atom

crystal structures have thus far characteristically offered only

marginal improvements with regard to relaxing the 1.2 Å

resolution limit. The ARCIMBOLDO program (Rodrı́guez et

al., 2009) might be considered to be a quasi ab inito direct-

phasing method. ARCIMBOLDO can solve protein structures

at resolutions as low as 2 Å provided that small generic

�-helices, of sufficient scattering power, can be correctly

positioned in the cell to initiate the phasing process.

2. Background

The SnB procedure operates in both real and reciprocal space.

It begins with a randomly generated N-atom starting model

where N is approximately equal to the number of independent

non-H atoms in the asymmetric portion of the unit cell. Given

these atomic coordinates, phases are computed for the �10N

largest |E| values. Approximately 100N phase invariants (’h +

’�k + ’k�h) are generated for the basis of the reciprocal-space

refinement. Each phase is refined to minimize R1(’h), a resi-

dual between its collection of computed cosine invariants,

cos(’h + ’�k + ’k�h), and �, their expected values,

R1ð’hÞ ¼
P

k

Ah;k cosð’h þ ’�k þ ’k�hÞ � �
� �2

=
P

k

Ah;k: ð1Þ

Here Ah;k ¼ 2�3jEhEkEk�hj=�
3=2
2 , where �n ¼

P
j¼1;Ncell

f n
j is

summed over Ncell, the total contents of the primitive unit cell,

represented by the atomic form factors fj raised to the

appropriate power. The most common refinement scheme,

often referred to as quadrant permutation, first calculates

R1(’h) given the initial atom-based values of the phases, then

recalculates this function three other times after incrementing

the value of ’h by �90 and 180�, and then accepts the value of

’h producing the lowest R1(’h) value. The phases are

sequentially refined for a small number of cycles prior to

computing an E map and selecting the N largest peaks for the

next overall cycle of refinement. After 100 or so overall

refinement cycles have been completed, R(’) is computed for

the entire phase set as Rmin. After a sufficient number of

different random-atom refinement trials have been completed,

one can inspect a histogram of the Rmin values to identify

solutions.

Earlier studies investigated the effect of different

parameter-shift protocols for sampling R1(’h) and deter-

mining its minimum value. Higher success rates were noted if

zonal restricted phases were allowed to vary as unrestricted

values in the earlier cycles of refinement. Different target

functions were also investigated with regard to increasing the

success rates and overall efficiency of the phase-determination

process. These have included the sine-enhanced (Xu et al.,

2002) exponential (Hauptman et al., 1999) and statistical (Xu

& Hauptman, 2004) versions of the SnB program. These

calculations were performed on a battery of representative
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light-atom test structures of various sizes in different space

groups, all at moderately high resolution, usually less than

1.0 Å. Similar trials were also run using �E derivative data for

macromolecular heavy-atom substructures, usually between

3 and 4 Å resolution, but these shall not concern us here (Xu

et al., 2002; Xu & Hauptman, 2006).

In most instances the original R1(’h) target function

significantly outperformed most of the others, but on occasion

a particular chosen variant could do better under certain

conditions. In all fairness, however, these studies were not

extended to lower-resolution light-atom data sets at which

point these methods begin to fail. Recent work now suggests

that the effectiveness of these alternative target functions

should be reinvestigated with regard to applications to lower-

resolution data.

3. Sine-squared target function

Attention here is to be called to a particular target function,

originally proposed by Hauptman more than 15 years ago,

which in previous tests at moderately high resolution was

much less effective than the R1(’h) function, which typically

had a success rate which was four or more times higher. The

new function adds a sin2(’h + ’�k + ’k�h) penalty component

to the R1(’h) minimization that tends to drive cos(’h + ’�k +

’k�h) toward larger values to accelerate the refinement

process. To wit

R2ð’hÞ ¼
P

k

Ah;k

n
cos ’h þ ’�k þ ’k�hð Þ � �
� �2

þ sin2 ’h þ ’�k þ ’k�hð Þ

o
=
P

k

Ah;k: ð2Þ

It should be noted that this equation can be rewritten as

R2ð’hÞ ¼
P

k

Ah;k 1þ �2ð Þ � �h cos ’h � �hð Þ
� �

=
P

k

Ah;k; ð3Þ

where the values �h = (A2 + B2)1/2, A ¼
P

k �Ah;k cosð’h�k

þ ’kÞ, B ¼
P

k �Ah;k sinð’h�k þ ’kÞ and �h = tan�1(B/A).

Unlike R1(’h), it is clear to see that R2(’h) is simply a

�-weighted tangent function which is bimodal, and has a

minimum when ’h = �h and a maximum when ’h = �h + 180�.

It follows that the best phase-shift estimates occur when �h is

large, and the poorest when �h approaches zero, in which

instance all values of R2(’h) are essentially the same.

4. Initial test calculations

Previous SnB calculations at moderately high resolution have

indicated that the higher-symmetry space groups are a bit

more difficult to determine than similar-sized structures in

lower-symmetry groups such as P1 and P21. For this purpose

four P212121 structures, each of approximately 100 non-H all

light (C, N, O) atoms, were selected (ILED, FILE4, FILE5,

TERN). The stability of the solution values of the phases to

SnB refinement was tested for both the R1 and R2 target

functions by performing a sufficient number of refinement

cycles to ensure that a stable minimum in R had been

obtained. These calculations were performed for each

diffraction data set truncated at 1.2 ! 1.5 Å, in 0.05 Å

increments. In all cases ’h was permuted by 0,�90 and 180� as

previously described, with three consecutive passes through

the list of phases per SnB refinement cycle. When each

refinement converged, the average phase error �’ between the

refined phases and their true values was computed, as is

recorded in Table 1. Two values for �’ are reported: the first,

�’1, is determined from the values of the phases computed

from the N peaks selected from the E map at the last refine-

ment cycle; the second, �’2, reports the error from the values

of the phases obtained at the end R(’) minimization. �’1 is

usually 5 to 10� less than �’2. As such, �’2 may be considered

as the closest that any particular target function will converge

towards the true values of the phases. The normal SnB default,

however, is to list the x, y, z coordinates of the N largest peak

positions obtained from the final E map rather than the values

of the phases obtained at any particular real-/reciprocal-space

refinement stage.

Both R1 and R2 were next used to solve the ILED structure

at 1.2 Å. 2000 random SnB trials were each iterated for 200

refinement cycles using 800 phases, 8000 triples and 80 picked

peaks. The R1 target function produced 68 solutions for the

1.2 Å data as compared with only 18 solutions for the R2

function, which was noted to be similar to the 4:1 solution

ratios usually seen for higher-resolution data sets when these

two functions were tested. But it was soon realized that there

was a serious flaw in the manner in which R2 was used to refine

the zonal restricted phases of the structure. Although quad-

rant permutation with the R1 function allows zonal phases the

possibility to occasionally refine away from their restricted

values to escape false R(’) minima to significantly improve the

success rate, it was belatedly recognized that the same does

not hold with regard to the R2 function. Rather, when zonal

Acta Cryst. (2011). A67, 396–401 Langs and Hauptman � Direct-methods phasing 397

research papers

Table 1
SnB phase errors for the four structures ILED (N = 84), FILE4 (N = 88),
FILE5 (N = 127) and TERN (N = 110).

The solution sets of phases were refined for 100 to 200 SnB cycles for both the
R1 and R2 target functions at seven different resolutions from 1.2 to 1.5 Å. An
asterisk (*) indicates that the phases degraded toward random values with
errors exceeding 80�. Trial sets, for which the phase error is less than 45�, can
be readily identified by a lower Rmin value as compared with random non-
solution sets. Once the phase error exceeds�50�, Rmin loses it ability to clearly
identify solutions from non-solutions, but they still usually place within the top
1 or 2% of the sorted Rmin list. Two values for the phase error (�’1; �’2) are
reported, as explained in the text.

RES (Å) Rn ILED† FILE4‡ FILE5§ TERN}

1.2 R1 27; 38 34; 41 38; 44 *
R2 19; 29 24; 31 29; 34 44; 48

1.25 R1 38; 42 * * *
R2 29; 36 32; 40 32; 34 58; 60

1.30 R1 * * * *
R2 34; 37 34; 38 40; 45 *

1.35 R2 35; 39 37; 42 46; 49 *
1.40 R2 38; 47 46; 50 56; 61 *
1.45 R2 46; 49 * * *
1.50 R2 49; 53 * * *

† Pletnev et al. (1980). ‡ Pletnev et al. (1991). § Pletnev et al. (1992). } Miller et al.
(1993).



phases are permuted either �90� from their permissible

values, the computed sin2(’h + ’�k + ’k�h) component will

tend to maximize the value of R2, thus strongly preventing any

temporary refinement towards those values. But when one

uses R2 to refine all the general phases and R1 to refine only

the small subset of zonal phases to allow them to temporarily

drift from their restricted plane, the number of solutions

produced by this modified procedure is seen to dramatically

increase from 18 to 76, thus slightly bettering the 68 successes

noted for the R1 trials cited above. In a previous study the

tangent formula was shown to be as effective as the R1 target

function in SnB applications to small- or medium-size struc-

tures having high-resolution data (Chang et al., 1997). But in

comparison, the tangent formula only produced 25 solutions in

5000 random SnB trials when applied to the 1.2 Å ILED data,

which is to say about seven times less effective than either

the R1 or R2 functions, while the �h target function proved

significantly better with 37 solutions in 5000 sets.

The R2 refinements were repeated for the ILED data

truncated at 1.4 Å using 600 phases, 10 000 triples and 65

peaks, for it was unreasonable to expect that all 84 atoms

could be resolved from the E maps at this lower resolution.

Whereas now the R1 target function does not produce any

solutions, the modified R2 scheme produced 11 solutions with

�’1 ranging between 38 and 50�, the majority of which could

be tentatively identified by their lower Rmin values. Random-

atom SnB trials were also computed for the 1.5 Å ILED data

(600 phases, 8000 triples, 65 peaks), and produced nine sets

with �’1 ranging between 49 and 59�, but Rmin was not as

selective to identify them as solutions among the 2000 sets.

5. Preliminary concerns

In Table 1 it is observed that the �’1 values are generally 5 to

10� smaller than their corresponding �’2 values, therefore it is

evident that the R(’) refinements of the map-based phase

values are actually diverging toward their minimal function

stable values. Not so astonishing, perhaps, was the fact that the

E maps calculated from these degraded phase values were

sufficiently good enough to interpolate reasonably accurate

peak positions for a large fraction of the N expected atom sites

to essentially recover the phase precision observed in the

previous cycle. Two questions logically present themselves.

Firstly, how can the convergence of the R(’) functions be

improved, and, secondly, might there be a better way to

determine more of the correct atomic positions from the map

density at moderately lower resolution.

6. Improving the R2(uh) convergence

The normal SnB quadrant permutation scheme may be very

effective in navigating the initial random-atom phases toward

their solution values for moderately high resolution data, but a

serious problem appears to exist with regard to refinement

convergence in applications to lower-resolution data. The

refinement results in Table 1 for the ILED 1.2 Å data will be

more carefully examined (R1, �’1 = 27, �’2 = 38�; R2, �’1 = 19,

�’2 = 29�). To this end Table 2 presents the average values of

�’1 and �’2 for ten groups of 80 phases sorted in descending

order on the magnitude of �h. This display clearly shows that

the majority of the phases with �h exceeding 0.69 are well

within 45� of their solution values, and will not be further

refined by the quadrant permutation protocol. It is the

remaining quarter of the phases that have the lowest �h values

that will be most affected by the refinement process, and,

indeed, as can be seen for the last two rows having the lowest

h�hi, the results are disastrous in that the atom-based values

are clearly superior to their parameter-shifted refined values.

This may be in part due to the relatively small number of

three-phase triples invariants that affect the refinement of

these phases. If the 10:1 ratio of triples to phases is increased,

say to 15:1, the results are significantly improved as is shown

for groups of phases in the lower part of Table 2(b). In fact, if

one now assigns individual weights for the phases as wth =

tanh(�h) and performs several cycles of a weighted R2

refinement to determine the best values for �h to replace ’h,

a significantly lower value for �’2 is obtained. Whereas

previously from Table 1, �’1 = 19, �’2 = 29� for the 1.2 Å data,

these values can now be significantly reduced to �’1 = 15, �’2 =

19�. The effects of this weighted �h refinement can also be

illustrated with the 1.5 Å ILED data. If we examine the best

phase set (�’1 = 49�, �’2 = 53�) obtained from the 2000

random-atom trials described above, several cycles of

weighted �h refinement are sufficient to reduce the phase

error to �’1 = 42�, �’2 = 47�, while its rank improves from 19th

to 2nd in the sorted list of 2000 Rmin values.

7. Improved map interpretation

At data resolutions greater than 1.2 Å the interpretation of E

maps as discrete resolved atomic peaks begins to degrade. For

a large peptide or protein molecule lacking sulfur-containing

amino-acid residues, the peptide nitrogen and carbonyl
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Table 2
The average values of �’1 and �’2 for the ILED phase refinements
presented as ten groups of phases sorted in descending order on the value
of �h.

The analysis in columns (a) refers to R1 refinements and in (b) to R2

refinements (both for 1.2 Å data with 800 phases, 8000 triples, 80 atoms picked
from map) while columns (c) list similar results for the R2 refinements of the
1.4 Å ILED data (600 phases, 6400 triples, 65 atoms).

(a) (b) (c)

h�hi �’1 �’2 h�hi �’1 �’2 h�hi �’1 �’2

11.71 11 11 13.02 8 8 7.13 14 12
4.28 14 17 4.51 12 12 2.46 23 23
2.58 18 23 2.74 17 18 1.49 38 42
1.77 19 27 1.82 17 19 0.96 25 35
1.25 25 35 1.32 14 18 0.71 38 46
0.90 28 34 0.97 18 23 0.51 48 46
0.69 33 45 0.70 23 31 0.39 40 57
0.52 40 46 0.50 27 40 0.30 51 65
0.32 45 61 0.33 30 46 0.21 45 64
0.16 42 79 0.16 23 71 0.11 57 80

h�’�i 27 38 19 29 38 47



oxygen atoms are generally well resolved and appear as the

largest density features in the E map. But the adjacent

carbonyl carbon positions, being 1.2 Å from the oxygen and

1.35 Å from the nitrogen positions, will most often not be

resolved as a discrete peak. They will at best appear within

positive density at a saddle-point minimum between the larger

densities that surround the peptide oxygen and nitrogen sites.

For example, only about four of the 12 ILED carbonyl C

atoms are usually resolved at 1.2 Å, leading to �64 correct

and �20 incorrect peaks among the 84 largest peaks listed.

One obvious way to remedy this situation could be the use

of difference maps, with coefficients (|Eh| � |Ehcal|)exp(i’hcal),

where Ehcal is the quasi-normal E value computed from the

resolved peaks of the original E map that one wishes to

subtract to reveal the locations of atoms at saddle-point

densities which cannot normally be determined by the ellip-

soidal interpolation algorithm (Rollett, 1965). In practice,

however, these difference maps often exhibit ghost peaks for

atoms incompletely subtracted and other spurious features as

a consequence of restricting the synthesis to only the largest

Eh magnitudes. Efforts to improve the scaling between the

observed |Eh| and |Ehcal| only lead to marginal improvements

with regard to locating atoms that were missed in the original

density.

If, however, one simply edits the original E map to subtract

a crude Gaussian-shaped density for each of the first 84 peaks

in the map, and then reinterprets the edited map, the results

are significantly improved. A simple correction of the form

�ðrÞdif ¼ �ðrÞ � �peak cosð90�r=1:2Þ ð4Þ

will suffice for all grid point distances �r that are less than

1.2 Å from the interpolated peak height of �peak. Note that this

difference map does not require an additional Fourier synth-

esis. In the case of the 1.2 Å ILED solution, if the list of main

peaks and difference peaks are combined and then sorted in

descending order on their extrapolated peak magnitudes, one

now observes 75 correct and nine incorrect peaks as compared

with 64 correct and 20 incorrect as noted previously, thus

reducing the number of incorrect entries from 20 to nine. For

the 1.4 Å phase solution noted in Table 1 which has �’2 = 47�,

only 35 of the top 84 peaks selected from the map correspond

to actual atomic locations. After applying the difference

density technique, that number is increased from 35 to 40

atoms from the top 84 peaks in the merged resorted list. In this

manner by means of �h refinement and the use of difference

maps the phase error can be further reduced, at which point

the 1.4 Å ILED solutions can be readily identified by their

significantly lower Rmin values.

8. Applications to larger structures

In a practical sense, structures in lower-symmetry space groups

are easier to solve than those in higher-symmetry space

groups. This is because the magnitude and significance of the

A values, A ’ 2|EhE�kEk�h|/Ncell
1/2, is inversely dependent on

the square root of the total number of light non-H atoms in the

primitive unit cell, Ncell = NsymNasym, where Nsym is the number

of equivalent positions for the space group and Nasym is the

total number of independent atoms in the asymmetric unit. It

follows that the A values for a triclinic structure are on

average twice as large as for the same structure crystallized

in the space group P212121 where Nsym = 4. This correlates

fairly well with the database of SnB successes reported on

our institutional website (http://www.hwi.buffalo.edu/SnB/

SnBSuccesses.htm). Since the largest P1 structures have about

1300 atoms as compared with around 620 atoms for several

P212121 studies, one can approximate the limiting number of

atoms as Nlimit ’ 1250/Nsym
1/2. Larger structures have been

reported elsewhere (e.g. Pal et al., 2008; Bunkóczi et al., 2005)

but have included determinable sulfur sites or large solvent

voids that may have aided the phasing process.

Here we shall test the effect of applying our new lower-

resolution phasing strategies to moderately high resolution

data sets for larger P212121 structures that are normally

insolvable to the SnB process. Data are presented in Table 3

for TOX2 (N = 624, 0.96 Å), AXAN (N = 1000, 0.98 Å),

TONG (N = 1100, 0.99 Å) and AXES (N = 1600, 0.90 Å). Only

the TOX2 structure had been previously solved by the SnB

process; the other three were known to be unstable when SnB

was seeded with the solution values of the phases. Note that

the original SnB R1 solution of TOX2 (Smith et al., 1997)

reported a mean phase error of 19�, rather than the 34� value

noted in the table, but this was only after the original 500

solution peaks were Fourier refined for a number of cycles.

The best measure of the effectiveness of the various SnB

phase-refinement target functions can only be fairly appraised

by �1 phase errors computed from atoms that have not been

extensively Fourier refined, as is the case during iterative SnB

refinement.

The number of phases, triples and map peaks selected for

the phase-determination process are indicated in the table.

Stability tests were initiated with phases computed from a

fragment of the structure, and 50 to 100 cycles of refinement

were performed to see if a stable solution could be retained.

The values of �’1 and �’2 are noted, as was for the lower-
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Table 3
SnB stability tests for four large P212121 structures at moderately high
resolution: TOX2, AXAN, TONG and AXES.

Only the smaller TOX2 structure is solvable using the standard SnB R1 target
function; the asterisks in line 5 for the AXAN, TONG and AXES structures
indicates they are not. Target function R2 is compared with respect to the
phase error (�’1; �’2) as described in Table 1. The number of E values, triples
and peaks selected from the E map for the SnB process are noted. R3

represents the �’ values following �h refinement and weak triples
augmentation. No difference density mapping is required at this resolution.

TOX2† AXAN‡ TONG§ AXES}

Number of atoms 624 1000 1100 1600
Number of peaks 500 800 800 1000
Number of ’’s 5000 8000 12000 12000
Number of triples 50000 185000 260000 200000
All data R1 34; 56 * * *

R2 28; 45 38; 52 36; 54 35; 56
R3 25; 42 31; 50 32; 52 28; 48

† Smith et al. (1997). ‡ S. D. Trakhanov, V. Z. Pletnev & A. P. Kuzin (unpublished
work). § Tong et al. (1996). } Ghosh et al. (1999).



resolution applications to the smaller structures. Note that the

AXAN, TONG and AXEL structures, which were previously

unstable to R1 refinement, now exhibit stable solution minima

for the R2 target function (�36, �54�) which are similar to

those previously noted for the R1 solution of the smaller

TOX2 structure (34, 56�). We here note furthermore, after

employing the �h refinement and difference-density peak

search, the results entered as R3 in Table 3 are appreciably

better, particularly so for TOX2 (22, 42�) and the larger AXES

structure (28, 48�). Where previously 600 atoms appeared to

be the limit for the standard R1 SnB target function for a

P212121 structure, it now appears that that limit may be

increased to more than 1600 atoms by incorporating the R2

function and strategies described above.

In closing, it is cautioned that, as larger structures are

investigated, the range of all Rmin values, both solutions and

non-solutions, strongly converge toward the minimal random

expected value of 0.50 (DeTitta et al., 1994). For example,

when 2750 random trials were each run 600 SnB cycles for the

AXES structure, all non-solution Rmin values fell between

0.487 and 0.493, with a � of �0.001. Although the solution

produced the lowest Rmin value of 0.487, many non-solutions

had Rmin values that were only infintesimally larger. To

remedy this problem, a chemically logical discriminant based

on reasonable bond-angle geometries was subsequently

defined that could clearly identify the true solution from all

the non-solution sets,

Rangle ¼ Nbad= Ngood þ Nbad

� �
: ð5Þ

Here, Ngood is the total number of reasonable bond angles

lying between 95 and 135�, while Nbad is the number lying

outside this range. In this regard, the AXES structural solution

produced an Rangle equal to 0.23, while the remaining 2750

non-solutions produced a Gaussian Rangle distribution ranging

between 0.46 and 0.74, thus clearly separating the solution

from all non-solution sets having similar Rmin values.

9. Summary

Solutions for the R2 target function have been shown to have a

greater phase stability and convergence power than for the

older R1 function in applications to lower-resolution data sets

and larger structures recorded to moderately high resolution.

Crude quadrant permutation is 5 to 10 times more effective

than directly seeking the minimum of the tangent or �h

formulas as far as navigating random phases toward their

solution values and avoiding false minuma. But the degree of

R2 convergence can be improved by late-stage �h refinement

and difference mapping to resolve overlapped atomic sites,

which incidentally do not add significantly to the total

computation time normally required. This presentation is not

meant to imply that the standard R1 target function should be

totally abandoned in preference to R2, as R1 may still have

some advantage to move the initial atom-based values of the

phases away from local false minima that the R2 function

might otherwise gravitate toward. We do not suggest that R2-

based �h refinement and difference mapping should be

performed in every refinement cycle, as they are undoubtedly

more valuable as an end-stage SnB refinement strategy to

drive the final set of phases toward a stable convergent

minimum. At this point, for any solution, since the majority of

the correct atomic sites are located near the top of the peak

list, peak-list optimization (Sheldrick & Gould, 1995) could be

effectively used to help eliminate more of the spurious entries

at the end of the last SnB refinement cycle. The analysis

performed here was not abetted by efforts either to artificially

extrapolate the limited data sets to higher resolution (Jia-xing

et al., 2005; Caliandro et al., 2005a,b), or extend the basis set of

triples to other types of invariants or improve their reliability

estimates prior to phasing, as these would tend to mask the

effectiveness of the modifications that were performed. Those

methods remain viable with regard to further extending the

improvements described in this report.

We thank Melda Tugac and Gloria Del Bel for their assis-

tance in this project. Drs V. Z. Pletnev, S. Parkin, S. E. Ealick,

A. P. Kuzin, L. Tong and D. Ghosh kindly provided the high-

resolution data sets for the macromolecular test cases

described. Research support from the Human Frontier

Science Program grant (HFSP-RGP0021/2006-C) is gratefully

acknowledged. We appreciate the collaborative efforts and

encouragement of Professors Alberto Podjarny, Nobuo

Niimura and Peter Timmins in this regard.

References
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